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I

HE problem of designing fast detumbling maneuvers for a

spacecraft with restricted actuation torques arises in many space
applications. Satellites are often equipped with an attitude control
system (ACS), which usually has two modes of operation: detumb-
ling and stabilization. In detumbling mode, the ACS controller is
responsible for dumping the initial angular velocity from when the
satellite was in the idle mode; this situation occurs when the satellite
is released from the launch vehicle or when power is so low that ACS
has to be turned off to save power [1]. Only after this phase can the
stabilization mode be activated to control the orientation of the
satellite to align antennas toward the Earth. Reaction wheels are
commonly used as the actuators of the ACSs. Satellites frequently
need fast maneuvers [2], minimum time maneuvers, while the speed
is restricted owing to a low level capacity of the actuators. Hence,
planning optimal maneuvers is highly desired.

Alternatively, spin-stabilized spacecraft allow simple attitude
maneuvers without the need for complex control systems. The
spacecraft can be spun up around its axisymmetric axis to stabilize
the orientation of the vehicle axis through the gyroscopic effect. This
method is also widely used to stabilize the final stage of a launch
vehicle [3]. However, when a spacecraft is in the tumbling motion, its
angular velocity is not parallel to the axisymmetric axis. Therefore,
the objective in deployment of a spin-stabilized spacecraft [4] is to
bring the spacecraft form the tumbling motion to the state wherein the
spacecraft spins around a single axis.

The detumbling or passivation of a satellite is also required before
on-orbit servicing of the satellite or its retrieval [5]. For such a
mission, an orbital maneuvering vehicle can be used to apply torques
to the target satellite for removing any relative velocity [3,6]. Also,
the vehicle can be equipped by an articulating arm with a grappling
device on it that could be driven to capture a tumbling target satellite
and then detumble it [7,8]. After capture of an uncontrolled tumbling
satellite by a space manipulator, the satellite should be brought to rest
in minimum time. Again, the restriction of the manipulator end
effector to provide “braking torques” for the fast maneuvers moti-
vates an optimal trajectory planning.

Optimal detumbling of multibody systems has been considered for
spacecraft possessing appendages, such as a robotic manipulator,
with well-controlled motion relative to the spacecraft to achieve
detumbling [9-13]. However, because of the complexity of dynamics
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of space manipulators, only a numerical solution or intensive trial-
and-error procedures have been found for the optimization problem.
The problem of time-optimal detumbling control of rigid spacecraft
is formulated as a nonlinear programming and solved numerically by
using an iterative procedure in [14], while nonoptimal control
approaches have been reported in [15-17]. There also exists a fair
amount of research done on the time-optimal reorientation control,
rest to rest, of rigid spacecraft [18—20] and a survey, for example, can
be found in [21].

This paper presents a closed-form solution for time-optimal
detumbling control of a rigid spacecraft with the constraint on
maintaining the Euclidean norm of the braking torques below a
prescribed value. The final angular rate can be specified as zero or any
vector parallel to the eigenaxis. The optimal control theory and
Pontryagin’s principle are applied to derive the optimal solution,
which is not only easy to implement but also gives a great deal of
insight. First, it will be shown that for our particular optimal control
problem, the system costates and states are related by a nonlinear but
static function. Subsequently, the optimal control law is explicitly
derived in the form of a nonlinear state feedback. The magnitude of
the system angular momentum is found to be linearly deceasing with
time, leading to a simple expression for the terminal time needed for
control implementation. Furthermore, the time-optimal controller is
extended for the case of nonzero terminal velocity. To this end, the
time-optimal control technique is applied to derive a nonlinear
feedback control law which can drive a tumbling axisymmertic
spacecraft to a final spin-stabilized state. Finally, the time-optimal
detumbling technique is illustrated through numerical examples.

II. Time-Optimal Control

A. Passivation of Tumbling Spacecraft

Dynamics of the rotational motion of arigid body (spacecraft) can
be expressed by Euler’s equation as

o =¢w)+I't 1)
where @ and t denote the vectors of the angular velocity and input
torque, both of which are expressed in the fixed-body frame, I is the

inertia tensor, and
¢ (@) =-I" (0 x L) @
The time-optimal control problem being considered here is how to
drive the spacecraft from the given initial angular velocity @ (0) to

rest in minimum time while the Euclidean norm of the torque input is
restricted to be below a prescribed value 7. That is the following

cost function:
Iy
J= / 1dr
0

is minimized subject to the terminal condition w (¢,;) = 0 while the
input torque trajectory should satisfy

7l = Tinax 3
where || - || denotes the L, norm or the Euclidean norm of a vector.
Denoting vector A € R? as the costates, we can write the system
Hamiltonian as

H=1+1¢)+ (I}t )
Then, the theory of optimal control [22] dictates that the time
derivative of the costates must satisfy
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and skew-symmetric matrix [a x| represents the cross product, that s,
[ax]b = a x b. If T* is the time-optimal torque history and @*, L*
represent the solutions of Eqgs. (1) and (5) for t = t*, then according
to Pontryagin’s minimum principle, optimal torque t* satisfies the
equation

H(o* A*, 1) < H®* A", 1), YTeR>3|t]| <10 (7

for every ¢ € [0, t;). Equations (4) and (7) together imply that

. I;ll*

T = = 3-17 » ‘max (8)
[Ny

Therefore, the dynamics of the closed-loop system becomes

120"

0*=¢(w*) _Wrmax

©

The structure of the optimal controller is determined by Eqgs. (5) and
(8) together. However, to determine the control input the initial
values of the costates, A (0), should be also obtained. In fact, by
choosing different initial values for the costates, we obtain a family of
optimal solutions, each of which corresponds to a particular final
angular velocity. In general, the two-point boundary value problem
for nonlinear systems is challenging. However, as it will be shown in
the following, the structure of our particular system (5) and (9) leads
to an easy solution when the final velocity is zero. In such a case, it
will be shown that the costates and states are related via the following
function:

2
Ilw

*
1T | Tmax

*

A1) = vV tel0.ty) (10)

despite the fact that the evolutions of the optimal trajectories of the
states and costates are governed by two different differential
equations (5) and (9). In other words, Eq. (10) is a solution to Egs. (5)
and (9). Note that since @*(f) =w(r) V t€[0,t), it is not
obvious that @ *(,) will be zeros. On the substitution of Eq. (10) into
Eq. (9), we arrive at the following autonomous system:

w*

(b*:qj(w*)_mrmax Vitel0,t) (11)

To prove that Eq. (10) represents the optimal trajectory, we need to
show that Eqgs. (10) and (11) satisfy the optimality condition (3).
Using Eq. (11) in the time derivative of the right-hand side (RHS) of
Eq. (10) yields

*

d,._ of® mem e o @ "I — 7% Tmax)
dt ¢ ||ICw*||‘[de ¢ ”Irw*Hatmax
[Te@™ (| Tmax

On the other hand, using Eqgs. (6) and (10) in the RHS of Eq. (5) yields

8¢Tl* _ —Llo*xl.o*+ (Te*) x Leo* 12¢

o 1@ || Tmax

L@ [ Ta

13)

A comparison between Egs. (12) and (13) clearly proves that Eq. (10)
is indeed a solution to the differential equation (5). Furthermore, the
Hamiltonian on the optimal trajectory becomes
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Therefore, the condition for optimality with open end time is also
satisfied [22]. The substitution of Eq. (10) into Eq. (8) gives

I.w*

%
—_—— T,
I Tew* | ™

T =

Vtel0,t) (14)

Apparently, the control law (14) constitutes a nonlinear state
feedback. The structure of Eq. (14) also gives an interesting insight
into the optimal control solution: the vectors of instantaneous torque
and the angular momentum are parallel but in the opposite direction.

Clearly, the torque controller should be turned off right after time
t; because the optimal solution is valid only for the time interval
[Otf). However, ¢, is not given beforehand; rather it is one of the
arguments of the optimization process. To be able to obtain the
terminal time, let us define & as the magnitude of the angular
momentum, that is,

hE Lol (15)
The time derivative of & along the optimal trajectory (9) satisfies

_0'lle  (Lo)[ox](le) (@ Te)t,,
1wl IToll el -

This means that the time-optimal controller reduces the magnitude of
the angular momentum linearly at the constant rate of 7,,.
Therefore, given initial angular velocity @ (0), the terminal time can
be computed from
[Lw ()]l
tp=——"— (16)

Tmax

Alternatively, the torque feedback can be turned off when the
angular velocity becomes sufficiently small. Assume that the
terminal condition is stated by

ol = e an

with € being selected to be arbitrary small. Then, the optimal torque
feedback can be specified by

I.w :
— Tl fllofl =€
= { "o fmax ! 18
’ {0 otherwise (18)

Now, it remains to show that the terminal condition (17) is satisfied
under control law (18). To this end, define the following Lyapunov
function:

V(w) =j0"l.0
From the identity o’ I .¢ (@) = 0, the time derivative of the above
function along trajectories of the closed-loop system (11) is obtained
to be seminegative definite, that is,

"/: _th,nfmax if ||w||2€ <
0 otherwise

Therefore, according to LaSalle’s global invariant set theorem
[23,24], the state trajectory must converge to the invariant set
Q C{w: ||@| < e€}. This means that the optimal controller (18)
reduces the tumbling rate to the residual error €.

B. Nonzero Final Velocity

A spin-stabilized spacecraft is spun up around a single eigenaxis to
stabilize the orientation of that axis, using the gyroscopic effect. To
drive a tumbling spacecraft to a final spin-stabilized state, the time-
optimal controller is extended for the case where the desired final
velocity is nonzero but it is parallel to the eigenaxis. Since all spin-
stabilized spacecraft are designed to be axially symmetric [25], we
assume that the inertia of the spacecraft is axisymmetric relative to
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the z axis, that is, the principle moment of inertia is I.=
diag{/,. I, I..}. The condition for the final velocity w ; = w(t) #
0 to be a spin-stabilized velocity is that it is parallel to the
axisymmetric axis, that is,

0
w;=|0 (19)
@y
Now, consider the following change of variable:
®=w-—w; where w(t;) =10 (20)

Then, the Euler’s equation in terms of the new variable can be written
as

G6=0@+w) +I't=¢@) + ;' (w0, x Lo, +o,
xILo+oxlo)+IT't=¢@) +Mo+1I7'r  (21)

where M is a constant skew-symmetric matrix, which can be
constructed from the values of the inertia matrix and the final angular
rate as

N 0 _ 1 xx];l 2z wf O
M= Ll 0 0 22)
‘ 0 0

Here, note that since o is specified to be parallel to the eigenaxis,
then w; X I.@; = 0. It follows the system Hamiltonian as

H=1+17T¢@) +A"Mo + (I:;'A)77 23)

Clearly, the torque restriction (3) implies a similar structure as Eq.
(8). Therefore, in a development similar to Egs. (11-13), one can
show that the optimal costates and states are related by

2 5%
Ilw

1@ || Tmax

L) = Vitel0.t)

which, in turn, gives the optimal torque as

Ic(w B wf’)
T = T . Umax (24)
[I(@ — @)

By inspection, one can show that
L*"TMo =0 (25)
Using the above identity in Eq. (23) yields
H*=1+AT¢(@*) + (I;'M)Tz* =0

which is similar to the Hamiltonian of the zero final velocity
system (4). Therefore, using the same argument as in the previous
section, one can conclude that Eq. (24) is the time-optimal controller
satisfying the Euclidean norm bound on the torque and the terminal
condition @ (t;) = 0.

Similarly, the terminal time for the case of nonzero final velocity
can be determined. Analogous to Eq. (15), let us define variable

h= 1|
whose time derivative satisfies

= oT(IM)®

h= ~Tmax + % = ~Tmax (26)
Lol

where the second term on the RHS of Eq. (26) vanishes because I .M

is a skew-symmetric matrix. Then, since ®(0) = @(0) — @, and

®(t;) = 0, the terminal time can be calculated from

@O )|

: - @7

max
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As illustrated in Fig. 1, the proposed time-optimal controller can be
easily implemented.

III. Examples
A. Passivation of a Tumbling Spacecraft
Consider a spacecraft with inertial tensor

1 05 -1
I.=[05 2 1 |kg-m? (28)
-1 1 5

that tumbles with angular rate

1.0
® (0)=1] 2.0 | rad/s (29)
0.5

at time ¢ = O s. The objective is to bring the tumbling spacecraft to
rest in minimum time while the magnitude of the torque that can be
applied to the body is restricted by

7] < 0.5 Nm (30)

According to Eq. (16), given the initial angular momentum of
h(0) = 9.67 kg - m?/s, the optimal controller is expected to achieve
complete passivation within 7, = 19.34 s. Figure 2 illustrates the
trajectories of the optimal torque applied to the satellite according to
the control law (18). The subsequent trajectories of the angular
velocities are shown in Fig. 3. Apparently, the controller succeeded
to reduce the angular velocity of the rigid body to zero within the
expected finite time #,. As shown in Fig. 4, the magnitude of the
angular momentum decays linearly to zero from its initial values.

| Spacecraft

I.w

— =T T
[Lewl] "mex

7 (Nm)

0 5 10 15 20 25
time (sec)

Fig. 2 Optimal torque trajectories for o, = 0.
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Fig. 3 Trajectories of the angular velocities for o, = 0.
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Fig. 4 The magnitude of angular momentum.

B. Spin-Stabilized Spacecraft

This example illustrates the application of the time-optimal
controller to bring an axisymmetric spacecraft from its initial
tumbling motion into a spin-stabilized motion. The spacecraft is with
principal moment of inertia I, = diag{4, 4, 2} kg - m? and the initial
angular rate as specified in Eq. (31). The objective is that the
spacecraft is spun up along its symmetric axis with final angular rate

— Tz

0.6 .

7 (Nm)

0 5 10 15 20 25
time (sec)

Fig. 5 Optimal torque trajectories for the nonzero final velocity.
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w (rad/s)

2 5 10 15 20 25

time (sec)

Fig. 6 Trajectories of the angular velocities to the final spin-stabilized
state.

0.0
®;=0.0 | rad/s 31
2.0

in minimum time, whereas the actuation torque is still limited by
Eq. (30). According to Eq. (27), given the difference between the
initial and final angular velocities, the optimal maneuver to bring the
tumbling spacecraft to the spin-stabilized state takes ¢, = 18.86 s.
Figures 5 and 6 illustrate the torque and angular rate trajectories of the
time-optimal maneuvers. As shown in Fig. 6, the spacecraft reaches
the desired spin-stabilized state within the predicted terminal time. It
should be pointed out that because a spinning rigid body about its
eigenaxis constitutes a stable equilibrium point, the spacecraft can
sustain its angular rate @ ; after the terminal time even if the controller
is turned off.

IV. Conclusions

A closed-form solution to the time-optimal control problem
relating to the detumbling maneuvers of a spacecraft is presented in a
finite-time interval subject to the constraint that the magnitude of the
driving torques is below a prescribed value. It has been shown that the
system costate is explicitly related to the state vector by a nonlinear
static function. This relationship has drastically simplified the
optimal torque solution, which is then given in the form of a nonlinear
state feedback. It turned out that the optimal torque solution has a nice
physical interpretation: the vectors of the instantaneous torque and
the angular momentum are parallel but in the opposite direction. It
has also been shown that the optimal controller decreases the
magnitude of the angular momentum linearly by time at the constant
rate of t,,,. This fact allowed the simple derivation of the final time,
which could be then used to turn off the feedback when the time
interval has elapsed. Alternatively, it has been shown that the optimal
torque feedback for detumbling maneuvers could be turned off when
the tumbling rate is reduced to a residual error. Finally, the time-
optimal control technique has been extended for the case wherein the
final velocity is nonzero but it is parallel to the eigenaxis. The optimal
controller can be applied to drive a tumbling axisymmetric spacecraft
to a final spin-stabilized state in minimum time given the limitation of
an actuator torque.
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